Implementasi CRISP-DM pada Data Mining untuk Melakukan Prediksi Pendapatan dengan Algoritma C.45
https://doi.org/10.36309/goi.v30i1.266
Diyah Ruswanti(1*) , Dahlan Susilo(2) , Riani Riani(3)
Affiliation
(1) Program Studi Informatika, Universitas Sahid Surakarta
(2) Program Studi Informatika, Universitas Sahid Surakarta
(3) Program Studi Informatika, Universitas Sahid Surakarta
(*) Corresponding Author
How to Cite
Cite this ItemAbstract
Keywords
Full Text:
PDF HAL. 111-121References
C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
M. S. Brown, “(For Dummies) Meta S. Brown-Data Mining For Dummies-Wiley Publishing Inc. (2014).pdf.” 2014. [Online]. Available: www.wiley.com
D. Zhu et al., “A Cluster Separation Measure,” Procedia Comput. Sci., vol. 2, no. 1, pp. 1–6, 2016, doi: 10.1016/j.procs.2016.09.180.
M. A. A. Riyadi and K. Fithriasari, “Data Mining Peramalan Konsumsi Listrik dengan Pendekatan Cluster Time Series sebagai Preprocessing,” J. Pengemb. Teknol. Inf. dan ilmu Komput., vol. 2, no. 4, pp. 1–6, 2016.
K. Englmeier, “The role of text mining in mitigating the threats from fake news and misinformation in times of corona,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 149–156, 2021, doi: 10.1016/j.procs.2021.01.115.
A. A. Az-zahra, A. F. Marsaoly, I. P. Lestyani, R. Salsabila, and W. O. Z. Madjida, “Penerapan Algoritma K-Modes Clustering Dengan Validasi Davies Bouldin Index Pada Pengelompokkan Tingkat Minat Belanja Online Di Provinsi Daerah Istimewa Yogyakarta,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 9, no. 1, p. 24, 2021, doi: 10.24252/msa.v9i1.18555.
J. M. Raimundo and P. Cabrita, “Artificial intelligence at assisted reproductive technology,” Procedia Comput. Sci., vol. 181, pp. 442–447, 2021, doi: 10.1016/j.procs.2021.01.189.
L. M. A. da Costa, F. A. Bernardi, T. L. M. Sanches, A. Kritski, R. M. Galliez, and D. Alves, “Operational modeling for testing diagnostic tools impact on tuberculosis diagnostic cascade: A model design,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 650–657, 2021, doi: 10.1016/j.procs.2021.01.214.
C. Bergmeir, R. J. Hyndman, and B. Koo, “A note on the validity of cross-validation for evaluating autoregressive time series prediction,” Comput. Stat. Data Anal., vol. 120, pp. 70–83, 2018, doi: 10.1016/j.csda.2017.11.003.
D. Feblian and D. U. Daihani, “Implementasi Model Crisp-Dm Untuk Menentukan Sales Pipeline Pada Pt X,” J. Tek. Ind., vol. 6, no. 1, 2017, doi: 10.25105/jti.v6i1.1526.
B. E. Adiana, I. Soesanti, A. E. Permanasari, J. G. No, J. G. No, and J. G. No, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” no. 2, pp. 23–32, 2018, doi: 10.21460/jutei.2017.21.76.
Y. Suhanda, I. Kurniati, and S. Norma, “Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik,” J. Teknol. Inform. dan Komput., vol. 6, no. 2, pp. 12–20, 2020, doi: 10.37012/jtik.v6i2.299.
T. W. Liao, Recent Advances in Data Mining of Enterprise Data: Algorithma Aplications. 2007.
T. B. Santoso and D. Sekardiana, “Penerapan Algoritma C4.5 untuk Penentuan Kelayakan Pemberian Kredit,” J. Algoritm. Log. dan Komputasi, vol. II, no. 1, pp. 130–137, 2019, [Online]. Available: https://journal.ubm.ac.id/index.php/alu
J. D. Rodr??guez, A. P??rez, and J. A. Lozano, “A general framework for the statistical analysis of the sources of variance for classification error estimators,” Pattern Recognit., vol. 46, no. 3, pp. 855–864, 2013, doi: 10.1016/j.patcog.2012.09.007.
DOI: https://doi.org/10.36309/goi.v30i1.266
Article Metrics
Abstract views: 366 | PDF views: 425Refbacks
- There are currently no refbacks.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-Berbagi Serupa 4.0 Internasional
DOI: 10.36309 Visitor Number: View Go Infotech stats